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An experimental investigation of the fine-scale structure of turbulence was carried 
out. Five different shear flows were studied: three in a wind tunnel with an open 
working section and an elliptical nozzle and two in a wind tunnel of closed working 
section and square cross-section. The experiments tested two approaches to the 
theory of fine-scale turbulence structure : one based on the Navier-Stokes equations 
and the other on some similarity hypotheses. The variability of all fine-scale 
constants (including exponents in inertial-subrange power laws and the Kolmogorov 
constant) is revealed. A correlation between all fine-scale constants and the external 
intermittency coefficient is established. 

1. Introduction 
Modern considerations concerning the fine-scale structure of turbulence at  high 

Reynolds numbers are based on the theory which was proposed by Kolmogorov 
(1941) and Oboukhov (1941). They assumed that there was no direct interaction 
between large energy-containing eddies and small energy-dissipating ones, but rather 
a cascade of energy from larger to smaller scales in the spectrum of turbulence. A t  
large Reynolds numbers the number of steps in such a cascade is also large. As a 
result some kind of universal equilibrium of small eddies can be expected. This means 
that the fine-scale structure of turbulence depends on a few parameters only. 
Originally, it was assumed that only the mean dissipation Bwas essential. In  this case 
the well-known equation 

(1)  

is valid for inertial-subrange turbulence (7 Q r Q L) .  Here u is a longitudinal velocity 
fluctuation, x is a longitudinal coordinate, r is a distance between two points, C is the 
Kolmogorov constant, 7 = (v3/i$ is the Kolmogorov lengthscale, 6 is the dissipation 
rate, v is the kinematic viscosity, and L is the integral turbulence lengthscale defined 

rn = [u(x + r )  - u(x)]2 = C(Cr)$ 

as 
L = ~ ~ u ( t + t l ) u ( t ) d t l  U2 

assuming the validity of Taylor’s hypothesis since only flows with low turbulence 
intensity ((uZ)i/U < 1) will be considered below. Here U is the mean longitudinal 
velocity, t is time. 

Equation (1) has been confirmed many times (see for instance the review by 
Yaglom 1981). However, it was found in many experiments that the original theory 
is not valid for high-order moments of the velocity difference Au (see Monin & 
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Yaglom 1967). This is due to the large variability of the instantaneous dissipation 
field, which is often called ‘internal intermittency’. In particular i t  was found that 

R,  = c ( x ) e ( x + r )  = Ce??(L/r)p, (2) 

if 
& Yaglom 1967) that (2) is valid down to scales of the order of 7, i.e. 

4 r 4 L. Here C, and ,u are also inertial-subrange constants. It is assumed (Monin 

- 
€2 = R,(O) - P(L/v)P. 

Therefore the r.m.8. dissipation fluctuation is a growing function of the Reynolds 
number. 

The influence of internal intermittency on fine-scale statistics has been studied by 
Kolmogorov (1962), Oboukhov (1962)’ Novikov & Stewart (1964), Yaglom (1966), 
Novikov (1971) and many others. Since the various expressions for high-order 
moments are different only in minor details, it is convenient to consider a similarity 
hypothesis which was proposed by Kolmogorov (1962) and slightly refined by 
Kuznetsov (1976). 

Consider three points x(l) ,  d2), x ( ~ )  such that 7 4 T = I X ( ~ ) - X ( ~ ) ~  Q R = 
J X ( ~ ) - X ( ~ ) ~  4 L ,  i.e. two inertial-subrange eddies with a large difference in length- 
scales. According to the original Kolmogorov (1962) hypothesis the conditional 
p.d.f. of velocity differences u = u ( d 2 ) )  - u(x ( I ) )  (assuming the velocity difference V = 
u(x@))  -u(x( l ) )  to be constant) depends only on u, r ,  V ,  R. If turbulence is locally 
isotropic, large-eddy orientation (i.e. orientation of vectors V and R) is insignificant. 
Therefore the conditional p.d.f. of the velocity difference u depends only on two 
vectors ( u  and r )  and two scalars (I VI and IRI). An exact relation 

(3) 
can be derived from this similarity hypothesis (Kuznetsov 1976; Kuznetsov & 
Sabelnikov 1986). Here q(n) is some unknown function, which cannot be derived 
from the similarity considerations. 

We have q = in if the original Kolmogorov (1941) theory is valid. A t  the present 
time two models are the most popular. The first one, the ‘lognormal’ model, was 
proposed by Kolmogorov (1962) and Oboukhov (1962)’ and yields 

- 
Aun - rQ(n) 

q(n) = (i+&p)n-+#n2. (4) 
The second, P-model, was originally proposed by Novikov & Stewart (1964). Later 

it was analysed in more detail by Frisch, Sulem & Nelkin (1978). Here we have 

q(n) =p+$( l -p)n .  

,u = 2-df-3 
The equation 

was proposed by Monin & Yaglom (1967)’ Kuznetsov (1976) and Frisch et al. (1978). 
It is based on dimensional considerations. Let us consider the correlation 
e(x) E(X  + r) ,  which is obtained by averaging over time intervals when the condition 
vo < IuI < vo+dv is met. We have 

e(x) E(X + r) ,  = const. x v i / r2  

if there is no dependence on the Reynolds number. It is evident that 
L 

R, = e(x)e(x+r),Pdv = const. x v 6 / r 2  - r*@)-’, J 
where P is the p.d.f. of velocity differences. 
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Both (4) and (5 )  predict q(2)  x 3 since p x 0.2 (see for instance the review of 
Kuznetsov & Sabelnikov 1986). Thus (1) is approximately valid. 

It seems that one important question remains unresolved: is the function q(n) the 
same under all flow conditions '2 

The answer would be affirmative if the similarity hypothesis has been stated 
correctly. In  this case there are no additional parameters governing the fine-scale 
structure of turbulence. If the answer is negative, then there are some additional 
governing parameters, i.e. generally speaking the function p(n) would be different in 
various flows or various locations of the same flow. 

At the present time there is a large amount of data concerning the exponent p in 
( 2 )  (see reviews by Monin & Yaglom 1967 and Kuznetsov & Sabelnikov 1986). 
However, most of the data were not taken systematically, i.e. only one measurement 
is reported in each article; the scatter is rather large (0.2 < p < 0.5). This could be 
attributed in part to the lack of measurement accuracy (for more discussion see $4). 
On the other hand, large and systematic variations of the exponent ,u were observed 
in our preliminary experiments (Kuznetsov, Praskovsky & Sabelnikov 1984, 1988). 
It is worth noting also that there is rather large variability of other inertial-subrange 
constants. For instance a large variation in the Kolmogorov constant C has been 
observed (1.6 < C < 2.5) ;  see for example reviews by Monin & Yaglom (1967), 
Yaglom (1981) and Kuznetsov & Sabelnikov (1986). Such a variability is larger than 
the accuracy of measurements, which is about 10% (see for instance Champagne 
1978). There are also two quite different theoretical considerations suggesting the 
variability of the inertial-subrange constants (see the next section). 

These considerations stimulated us to perform systematic measurements of 
various fine-scale characteristics in five different shear flows. The main purpose of 
this study was to find out if there is a variability of inertial-subrange constants. 

2. Theoretical background 
Our experiments were based on the following theoretical considerations. It is 

convenient to begin with the more familiar one, which is related to basic ideas of 
multifractal theory (Parisi & Frisch 1985) where the exponent p and other exponents 
in inertial-subrange power laws are treated as random variables. Equation (2) should 
be modified now to 

where P ( p )  is the p.d.f. of the exponent p. Equation ( 2 )  remains approximately valid 
in the double limit r / L  + 0,  q / r  + 0. 

We have 

since In ( L / r )  $ 1. Here pmax is a maximum value of p. It is easily seen that (7)  differs 
from ( 2 )  only by a slowly varying correction factor l/ln(L/r). 

It is assumed that the random variation of each exponent is caused by the 
singularities of solutions of the inviscid Navier-Stokes equations, i.e. different values 
of each exponent correspond to the different types of singularities. Since this 
consideration is based on the intrinsic properties of dynamic equations, it could be 
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expected that the statistics of each exponent does not depend on particular flow 
conditions. 

Some work has been done to verify the Parisi-Frisch model. However, most of the 
data were obtained using the measurements of conventionally averaged moments 
(see for instance Chhabra et al. 1989). The interpretation of these data is not 
straightforward since all conventionally averaged moments could be well approxi- 
mated by power laws and such an approximation would be valid if there is no random 
variability of inertial subrange exponents. Some work has been done to find 
singularities directly from velocity time histories (Argoul et al. 1989, Bacry et uZ. 
1989). I n  our opinion, the results were inconclusive. 

The second theoretical consideration is based on the equation for the p.d.f. of the 
velocity difference P(u,  r )  (Kuznetsov 1976, see also Kuznetsov & Sabelnikov 1986). 
The pressure term in this equation is equal to some integral over phase space (V, R) 
and the integrand is proportional to  the p.d.f. P(u , r ,  V , R )  of the two velocity 
differences u and V, i.e. the equation for P(u,  r )  is not closed. However, one important 
conclusion could be drawn from the similarity hypothesis alone. We found, after long 
and complicated analytical work, that  the large-scale contribution to the pressure 
term (i.e. the role of scales which are much larger than r )  is insignificant only if 

q(n) -q(n-2)  < 2. (8) 

It is evident that  inequality (8) is valid for all values of n if the original 
Kolmogorov (1941) model (q = in) or the P-model, (5), are used. I n  other cases the 
inequality (8) could be violated a t  some n, i.e. there is a direct interaction between 
eddies with a large difference of lengthscales. Thus it could be expected that the 
function q(n) depends on the structure of the largest eddies. If their characteristics 
are random functions, then i t  could be expected that q(n)  would be also random. 
Therefore both theoretical considerations suggest the random variability of all 
exponents in inertial-subrange power laws. However, the cause of such a variability 
is quite different in the second case since the role of boundary conditions in the 
formation of the largest eddies is important. Thus it could be expected that all 
exponents (including a maximum value of p as is defined by (2)) are different in 
various flows or even in various locations of the same flow, if there is a direct 
interaction between eddies with large difference of lengthscales. This conclusion 
could be easily verified by relatively unsophisticated experiments. It seems also that 
the proof of the random variability of exponents could be based on measurements of 
the quantity E ( Z )  E ( Z + T )  conditionally averaged under some (not yet known) 
conditions. If the exponent p depends on the conditions imposed, this would be proof 
of its random variability. 

There are several reasons to study the influence of external intermittency on the 
variability of exponent p .  This phenomenon occurs a t  any free-stream edge - in 
boundary layers as well as in jets and wakes. It is caused by random movement of 
the boundary dividing the outside part of a flow, where no vorticity is present (non- 
turbulent fluid), and the inner part of a flow where violent vorticity fluctuations 
(turbulent fluid) exist (Townsend 1956). Internal intermittency is met only in the 
turbulent part of the flow. It is often assumed that internal and external 
intermittency are quite different phenomena (Chhabra et al. 1989). 

However, i t  is not easy to make a clear distinction between the effects of the two 
types of intermittency (Kuznetsov & Sabelnikov 1976, ch. 1) .  It is evident that 
vorticity (and hence dissipation) is not zero through the entire flow field (except a t  
some points) if the Reynolds number R is finite. Thus for the quantitative definition 
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of external intermittency i t  is necessary to adopt some threshold level, e0, assuming 
that fluid is turbulent if E > and non-turbulent otherwise. However, there is no 
satisfactory method of selecting c0. One would think that this difficulty could be 
overcome if the Reynolds number is made infinite since it can be assumed that 

= 0. A new difficulty is encountered in this case. It is caused by the finite resolution 
of any experimental device (if experiments are performed) or numerical code (if 
Navier-Stokes simulations are done). Therefore one can measure or calculate only a 
dissipation E‘ averaged over some volume of size 1. Thus the external intermittency 
factor y should be defined as 

(9) y = lim prob ( d  > E ~ ) .  
1+0 

R + m  
EO’O 

As was mentioned in $ 1  the r.m.s. dissipation fluctuation is infinitely large at 
infinite Reynolds number. Therefore the choice of 1 would influence e1 significantly if 
l is small and the Reynolds number is large but finite. Hence there is a possibility that 
the limit (equation (9)) does not exist, as was suggested by Kuznetsov & Sabelnikov 
(1986). Such a possibility was also suggested by our preliminary experiments (for 
more discussion see $ 5 ) .  

Thus it is convenient to adopt a more general definition of external intermittency : 
it will be assumed that external intermittency exists if there are regions of non-zero 
volume where the energy dissipation rate tends to zero in the limit of infinite 
Reynolds number. This means that y is equal to the upper limit in (9). 

There are some considerations indication that y < 1 at all locations of all flows, 
based on the equation for the p.d.f. of passive scalar concentration (Kuznetsov 1967, 
1972; Kuznetsov & Sabelnikov 1986). To close this equation it was assumed that 
concentration and scalar dissipation were statistically independent quantities (see 
also the report of Kuznetsov & Raschupkin 1977 where this assumption was 
verified). This assumption is an extension of Batchelor’s (1953) hypothesis about the 
statistical independence of Fourier modes with large difference of wavenumbers. As 
shown by Batchelor (1953), it is based on a cascade mechanism of energy transfer in 
the turbulence spectrum, i.e. it is one of the most important conclusions of 
Kolmogorov theory. 

It was proved that the external intermittency factor y is always less than unity, 
i.e. an external intermittency is observed everywhere. Of course, this does 
not necessarily mean that intermittency is considerable everywhere. For instance 
1-7 - lop4 at the round jet axis, which is well beyond measurement accuracy. 

As was pointed out by Kuznetsov & Sabelnikov (1986, ch. 3) the existence of 
external intermittency (in the sense of the definition in (9)) is a rather strict 
consequence of Kolmogorov (1941) theory. This was the main reason for studying the 
influence of the external intermittency factor on the value of inertial-subrange 
constants. Some other models also suggest the existence of such an influence. For 
instance it was assumed in a multifractal model of Siebesma et al. (1989) that the 
probability of eddy fragmentation depends on the activity of neighbouring regions. 
This would imply that the exponent ,u is a function of y. 

Since variability of the inertial-subrange constants was found in our preliminary 
experiments (Kuznetsov et al. 1984, 1988) it becomes evident that ( 1 )  and (2) are 
approximations which are valid only if the effects of external intermittency are 
small. Its possible generalization could be based on a highly simplified model, i.e. i t  
would be assumed that turbulent and non-turbulent volumes could be separated 
quite easily, which is possible only if the scales of external and internal intermittency 
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are quite different. It is evident that the universal equilibrium of small eddies could 
be expected only within a turbulent fluid, i.e. 

Z$ = Ct(,r)%, q(z)s,(z+r) = c&?(L/~)&,  (10) 

where subscript t denotes a conditional averaging over turbulent fluid and C,, C,, pt 
are new quantities expected to be universal constants. 

Equations for conventionally averaged quantities could be derived from (10). It is 
convenient to define an intermittency function T(z) such that r = 1 if B ( X )  > 0 and 
T =  0 otherwise. There are four possibilities, i.e. both points (z and z + r )  are within 
the turbulent fluid, both points are within the non-turbulent fluid, the first point is 
within the turbulent fluid and the second point is within the non-turbulent fluid and 
vice versa. Let us denote the corresponding probabilities as ytt, ynn, ytn and ynt. For 
locally homogeneous turbulence we have (Kuznetsov & Sabelnikov 1986) 

Ytt = Y - P ~ ?  Ynn = 1-Y-Pw3 Ynt = Ytn = D w ,  
- 

where y = r, D ,  = [T(z+r)-T(z)I2. 

It is seen from these equations that ytt --f y ,  ynn --f 1 - y ,  ynt = ytn --f 0 if r -+ 0 since 
Dw+ 0 if r + 0. Thus only two possibilities need be considered if small-scale eddies 
are of major interest, i.e. both points are within a turbulent fluid or both points are 
within a non-turbulent fluid. It is well-known that small-scale fluctuations can be 
neglected in a non-turbulent fluid (Phillips 1955). Thus we have 

i.e. c = $Ct, c, = y-1C,, p = rut. (lla-c) 

Here the relation 8= y< has been used. 
In spite of some shortcomings of the theoretical arguments it is evident now that 

the Kolmogorov constant C, defined by (l) ,  can be a non-universal quantity. This 
conclusion is rather obvious. However, as far as we know it has neither been tested 
experimentally (except in our preliminary reports) nor taken into account in 
theoretical predictions. It should be kept in mind that the verification of analytical 
theories of turbulence is based mainly on the comparison between measured and 
calculated values of the Kolmogorov constant C. Apparently the variability of 
‘constant ’ C would contradict the theoretical results. However, only a slight 
modification of such theories is necessary if quantity Ct is a universal constant, i.e. 
these theories should be applied only to a turbulent fluid. This was the reason for 
testing (10) and (11).  

It is seen from (11)  that there is no direct (or, more precisely, kinematical) 
influence of intermittency on the exponent p. As far as we know this conclusion has 
been tested only twice (Kuznetsov et al. 1984, 1988). It was not confirmed by these 
experiments, but there was some evidence suggesting that ,u was a universal function 

It seems that the observed variability of exponent ,u is indirect evidence of direct 
interaction between the largest and the smallest eddies. Direct evidence of such an 
interaction could be obtained if two quantities are measured. The first one is defined 
as follows: 

of y. 

where P ( u )  is a p.d.f. of velocity, and P ( u ,  &/ax) is the joint p.d.f. of the velocity and 
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its derivative. It is evident that this quantity does not depend on u if there is a big 
separation of scales between energy-containing and energy-dissipating eddies and 
there is no direct interaction between such eddies. It is worth noting that the 
hypothesis concerning the statistical independence of u and ( a u / a ~ ) ~  plays an 
important role in the derivation of the equation for the p.d.f. of velocity (Kuznetsov 
1967) and in the derivation of corrections to hot-wire measurements in high-intensity 
turbulent flows (Lumley 1965; Heskestad 1965). 

The second quantity is defined as follows: 

where P(Au) is the p.d.f. of the velocity difference, and P(Au, au/ax) is the joint p.d.f. 
of the velocity difference and velocity derivative. Here Au = u(x+r)  -u(z), where r 
is a variable parameter. This quantity is a measure of the direct interaction between 
energy-dissipating eddies and eddies which have a linear scale equal to r. It plays an 
important role in the derivation of the equation for the p.d.f. of the velocity 
difference (Kuznetsov 1976). 

3. Test facilities and data processing 
3.1. Wind tunnels and characteristics of shear Jlows 

Two wind tunnels were used. The first one had an open working section and 
elliptical nozzle. The length of the working section was 24 m. The major axis of the 
ellipse was 24 m long and the minor one 14 m long. The free-stream turbulence 
intensity was 0.&0.8%. The second tunnel had a 4 m long closed working section 
with a square cross-section 1 x 1 m2. The turbulence intensity was 0.024.04%. 

The first wind tunnel was used to investigate three shear flows. The first flow was 
the axisymmetric wake behind a 10 m long cylinder placed along the tunnel axis (see 
figure 1 a).  The cylinder diameter d was 0.975 m. The flow velocity U, was 10.3 m/s, 
so that the Reynolds number R = U, d/v was 6.7 x lo5. All measurements were done 
at z/d = 16.8, where 2 is the distance from the cylinder trailing edge. 

The second flow was the wake behind the same cylinder placed symmetrically 
along the major axis of the nozzle (figure l b ) .  This flow could be called a three- 
dimensional wake since the cylinder length was less than the length of the major 
nozzle axis. Measurements were done along the minor axis of the cross-section 
located a t  distance x/d = 19.7 from the cylinder axis. The flow velocity U, was 
9.89 m/s (R = 6.4 x lo5). 

The third flow was the mixing layer between the jet issuing from the wind-tunnel 
nozzle and the ambient air. The jet velocity U,, was 10.9 m/s. Measurements were 
performed at a distance x = 20 m from the nozzle (R = U,x/v = 1.5 x lo'). All data 
were taken in the high-speed part of the mixing layer. 

The second wind-tunnel was used to investigate two other flows. The first was a 
plane two-dimensional wake behind a cylinder. Its diameter d was 5 cm. Flow 
velocity U, was 8.12 m/s (R = 2.7 x lo4). Measurements were done at distance x/d = 
58.6 from the cylinder axis. The second flow was the boundary layer on the wind- 
tunnel wall. Flow velocity U,, was 8.13 m/s and the boundary-layer thickness 6 was 
3.82 cm (R = U,S/v = 2.1 x lo4). 
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m 

FIGURE 1.  Locat.ion of test cylinders in the 24 x 14 m2 tunnel nozzle. 

3.2. Measurements and data processing 
A single hot-wire made of platinum-plated tungsten and a constant-temperature 
anemometer (DISA 55A01) were used. The hot-wire was 0.33mm long and its 
diameter was 2.2 pm. To check the spatial resolution some measurements were done 
with wires 1 and 3 mm long. A linearizer was not used since the turbulence intensity 
was quite low (see the next section). 

A tape recorder (Schlumberger MP5522) was used to record the hot-wire signal. 
The tape velocity was equal to  38.1 cm/s, so that frequencies up to 10 kHz were 
resolved. As will be seen in the next subsection, the Kolmogorov frequency fK = 
U / 2 q  was everywhere less than 10 kHz. 

Velocity realizations stored on a magnetic tape were digitized using as 12 bit 
analog-to-digital converter and processed on a digital computer. A low-pass filter was 
used a t  the digitizer input to reduce the noise level still further. The choice of its 
cutoff frequency was based on the following considerations. It was found that spectra 
of velocity derivatives obtained without a low-pass filter were growing functions of 
frequency if the frequency was more than about 8 kHz. It was found also that the 
Kolmogorov frequency was roughly the same in all experiments ( fK w 3.5-7.1 kHz). 
Thus i t  was natural to reduce the noise level by removing frequencies of more than 
6.4 kHz. A similar procedure was used by Antonia, Satyaprakash & Hussain (1982). 

A sampling frequency of f s  = 32 kHz was used, i.e. the ratio of discretization 
spatial interval Ax =.UAt t o  the Kolmogorov scale 7 was equal to  0.7-1.3 (At = l/fs 
is the discretization time interval). This ratio was better than is usually achieved (see 
for example Champagne, Pao & Wygnanski 1976 where it was about 2 for the central 
region of the mixing layer). Each quantity was averaged over a time interval equal 
to  53.25 s, i.e. 1704000 samples were stored. The influence of sampling interval on 
measured turbulence characteristics will be discussed in $4. 

As will be seen later, the turbulence intensity was fairly low ( ( G ) i / U  = 0.034.1 1 )  
in all cases except a t  one location in the mixing layer. We therefore used Taylor’s 
‘frozen flow’ hypothesis, i.e. i t  was assumed that 

For more discussion see the next section. 
Cubic splines as well as the equation 

au u( t+At) -u( t )  
ax 2At 
_ -  - 
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- - u (2)i L € II fK T en 

Location $ (m/s) (m/s) (m) (m*/sa) R, (mm) (kHz) y (mz/s3) (mz/sS) 

AW1 
AW2 
AW3 
TW1 
TW2 
TW3 
ML1 
ML2 
PW1 
PW2 
BL1 
BL2 

0.685 9.39 
1.02 9.75 
1.72 10.2 
0 8.64 
1.34 9.55 
1.60 9.71 
0.05 9.82 
0 7.30 
0 7.22 
1.18 7.78 
0.209 6.00 
1.15 8.10 

0.668 
0.57 1 
0.355 
0.592 
0.481 
0.408 
1.12 
1.51 
0.497 
0.400 
0.684 
0.179 

0.445 0.270 860 0.33 4.5 0.46 
0.462 0190 745 0.37 4.2 0.37 
0.453 0.117 370 0.41 4.0 0.21 
0.531 0.462 515 0.29 4.7 0.63 
0.614 0.279 440 0.33 4.6 0.30 
0.608 0.229 360 0.35 4.4 0.24 
1.06 0.811 1400 0.25 6.2 0.52 
1.14 1.88 1660 0.21 5.5 0.89 
0.127 1.65 190 0.21 5.5 1.0 
0.097 1.03 160 0.24 5.1 0.70 
0.097 11.7 140 0.13 7.3 1.0 
0.283 0.189 75 0.37 3.5 0.10 

0.721 
0.571 
0.553 
0.878 
0.974 
0.978 
1.81 
2.62 

1.70 

1.16 

- 

- 

0.033 
0.027 
0.030 
0.044 
0.050 
0.037 
0.181 

0.054 

0.083 
- 

TABLE 1. Turbulence characteristics at the locations studied in detail. AW and TW denote 
locations in the axisymmetric and three-dimensional wakes, ML in the mixing layer, PW in the 
plane wake and BL in the boundary layer. The numeral after each abbreviation corresponds to the 
location number in a particular flow. 

were used to calculate the velocity derivative. The results agreed to within 0.1 % for 
the r.m.s. velocity derivative. 

Local isotropy was assumed in order to calculate C and p, i.e. it was assumed that 

8= 15v(au/az)’. (15) 

The errors produced by this assumption will be discussed in $6, 
The equation 

was used instead of (2) to calculate C, and p. It is evident that value of the exponent 
p given by (2) and (16) would be the same for isotropic or nearly isotropic turbulence. 

To characterize the flow regimes, two lengthscales were used. The first was the 
integral lengthscale L defined in 9 1. The second was the Taylor microscale 

h = (;;J”/(au/az)”i 

This scale was used to  define the Reynolds number 

(?);A R,=-. 
V 

3.3. Flow regimes 
Quantities C, C, and p were measured at many locations in all five flows. To gain 
more detailed information two or three locations were chosen in each flow. As a rule 
the chosen locations represent regions with the smallest and the largest external 
intermittency. Detailed information concerning turbulence characteristics at  these 
locations is presented in table 1. Locations in the axisymmetric and three- 
dimensional wakes, the mixing layer, the plane wake and the boundary layer are 
included. The lateral coordinate y was non-dimensionalized, i.e. ij = y/6 for all wakes 
and the boundary layer, and i j  = y/x for the mixing layer. Here 6 is a wake half-width 
or boundary-layer thickness. 

20 FLM 243 
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It is seen that rather large Reynolds number R, (up to 1700), low turbulence 
intensity (less than 0.1 l), high spatial resolution (with one exception hot-wire length 
was less than 1.67), high temporal resolution (the Kolmogorov frequency fK = U/2x7 
was below the cut-off frequency, 6.4 kHz) were achieved. 

4. Accuracy of measurements 
4.1. The accuracy of inertial-subrange approximations 

It was convenient to calculate the one-dimensional spectrum El instead of the 
structure function m. It is known (see Monin & Yaglom 1967) that 

u(x)  u(x+r)  cos (kr) dr = C, 8 k-f, C, = G/4.02 (17) 

in the inertial subrange. Here k = 27tf/U is a wavenumber. 
Some data are presented in figure 2. In all cases constant C, was calculated using 

the least-squares method. It was found that (17) is valid to within + 5 %  accuracy. 
In some cases the constant C was calculated from (1): the difference between 
calculations based on (1) and (17) was not more than a few percent. 

Four methods were used to calculate the exponent p. The first was based on (16), 
and the second on the quantity 

which is almost equal to R, if r / L  -+ 0 and y / r  -+ 0 (see (2)). 
The third was based on a Fourier transform of (18), i.e. 

E,, = - B,(r) cos (kr) dr - k'-p ; (19) 2x l r  

and the fourth was based on (6). All methods would be identical if the Reynolds 
number were high enough. 

It was proved that power-law approximations were good in all cases. As an 
example, tests of the validity of power-law approximations are presented in figure 3. 
However, it was found that exponents p measured by various methods are different, 
even in a mixing layer where the Reynolds number was as high as R, = 1700. At the 
location ML2, p = 0.14 from (16); p = 0.45 from (18); p = 0.60 from (19) and p = 
0.24 from (6). 

It should be emphasized that (16) and other similar equations are valid only 
asymptotically (Reynolds number tends to infinity and distance r tends to zero). 
Therefore other terms in the asymptotic (16) could be important if the variation of 
the first term within an inertial subrange is not large. Perhaps this was the case since 
the ratio of values of R,, at the lower and the upper bounds of the inertial subrange 
did not exceed 3. Of course, this consideration is also valid for the second-order 
structure function and one-dimensional spectrum. However, it is less important 
there since the variation of turbulence spectrum across the inertial subrange was 
more than two orders of magnitude. 

Since other terms in expansion (16) are not known yet, there are no theoretical 
arguments to help decide on the best definition of exponent p, nor is there any 
possibility of measuring it at a sufficiently higher Reynolds number. The highest 
reported Reynolds number was about R, = 13000 (Champagne 1978), which seems 
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FIGURE 4. The influence of spatial resolution on measured values of exponent y ,  location AW3: 
x , hot wires of different lengths ; 0, numerical averaging. 
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to be close to the highest possible. In Champagne’s measurements the length of the 
inertial subrange was up to three decades (compared to two decades in the present 
data). It is easily seen that the variation of R,, within an inertial subrange would not 
be large even at R, = 13000 (it would be about a factor six if ,u = 0.25). 

Therefore the definition of exponent ,u adopted here was somewhat arbitrary: it 
was based on (16). A similar definition is widely used now (see Antonia et al. 1982). 
There was only one justification : i t  is seen in figure that the power-law approximation 
is good enough. Surprisingly this approximation is valid well beyond the upper 
boundary of the inertial subrange (up to r x L ) .  

4.2. The spatial resolution 
As seen in table 1, the ratio of hot-wire length to the Kolmogorov scale was equal to 
2.5 in the worst case. Thus it could be concluded from the results of Wyngaard (1968) 
that the accuracy of mean dissipation measurements was better than 4 YO if no other 
sources of errors were present. However, the influence of spatial resolution on the 
measurement accuracy needs more attention since we are interested in measuring the 
second moment of the dissipation. In this case the role of dissipation fluctuations is 
expected to be large, since the instantaneous value of the Kolmogorov scale (i.e. 
7 = ( v 3 / 4 f )  could be low. 

Since Wyngaard’s theory could not be applied in this case it was decided to 
perform two experiments. Additional measurements with hot wires of length 1 and 
3 mm were made in the first experiment. The idea of the second experiment was 
based on Wyngaard’s data. It was shown that the signal from a hotwire is equal to 
the velocity averaged over its length. Therefore the signal registered by a hotwire of 
length 0.33 mm was averaged over a variable time interval. 

Some data are presented in figure 4. It is seen that the extrapolation of data down 
to zero hot-wire length would lead to negligible corrections. It is seen also that the 
observed exponent y decreases when the spatial resolution becomes poorer. The same 
results were obtained in other flows. The trend observed by Pond & Stewart (1965) 
was the opposite. 

It could also be concluded that the influence of the ratio of hot-wire length to its 
diameter (which was slightly less than usual) is negligible. The influence of spatial 
resolution on the accuracy of measurements of constants C and C, was studied in the 
same experiments. It was found to  be about 5%. 

4.3. Nonlinearity of hot-wire response and Taylor’s hypothesis 
As was mentioned above, the turbulence intensity was quite low, i.e. the nonlinearity 
of the hot-wire response and corrections to Taylor’s hypothesis could be neglected. 
On the other hand the influence of these factors on the measured value of exponent 
,u should be analysed, since this exponent is expected to be small. For simplicity i t  
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is convenient to consider a one-dimensional model. Write the relation between 
measured velocity w and true velocity u as w = f (u) .  We have 

where subscript 1 denotes the velocity at  time t,. Now Heskestad’s (1965) assumption 

a a 
- = - ( U + u ) -  
at ax 

can be used. Combining (20) and (21) we obtain 

gzy = [ f ’ ( U ) f ’ ( U 1 ) ] 2 ( U + U ) 2 ( U + U 1 ) 2  (;:;I -- 

It can be assumed that f (u)  x f (u l ) ,  U+u,  x U + u  since the correlation Re, is 
calculated in an inertial subrange where the difference t - t ,  is small. It can also be 
assumed that the velocity and its gradient are statistically independent quantities. 
This assumption will be proved in $7. Thus we have from (22) 

In other words the nonlinearity of the hot-wire response and corrections to Taylor’s 
hypothesis could affect only the constant C, and there is no influence of either factor 
on the exponent p. The proof would be the same in a three-dimensional case. 

4.4. Instrumentation errors 
The signal-to-noise ratio was measured in the free stream of the first wind tunnel. The 
mean flow velocity was approximately the same for all five flows, as listed in table 
1 (U,  x 10 m/s). The signal-to-noise ratio was 25-250 for velocity fluctuations and 
5-20 for velocity derivative fluctuations. 

4.5. Convergence of various moments 
As can be seen in table 1, the ratio of turbulence integral time scale L / U  to the 
sampling interval T was largest at location ML2. Therefore this location was chosen 
to study the convergence of various moments. We have used the data of Champagne 
et al. (1976) which were also obtained in a mixing layer. It was assumed that the 
convergence of all moments depended only on the non-dimensional quantity UT/x .  
It was found that the sampling interval should be equal to T = 3 min to gain 5 %  
accuracy in the velocity variance and should be equal to T = 45 min to gain the same 
accuracy in dissipation measurements. 

Since the sampling interval was too large in the latter case, it was decided to study 
the convergence of non-dimensional quantities such as 

which were the most important in providing information about the variability of the 
inertial-subrange constants. Note that all quantities in (23) were averaged over the 
same time interval. Theoretical considerations indicate that the statistics of the 
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velocity difference Au(r) depends only on the dissipation averaged over a space 
interval equal to r (Oboukhov 1962). Therefore it could be expected that the 
convergence of non-dimensional quantities defined by (23) would be better than 
convergence of and R,. 

This was the case. One example for the constant C, is given in figure 5. Note that 
the sampling interval at  this location was five times longer than that indicated in 
$4 (T = 5 min). It was found that the maximum difference between values of C, 
obtained for T = 1 and 5 min was about 10 %. This difference is small compared with 
the total variation of correlation R, within an inertial subrange (it was about three 
times). Convergence of the Kolmogorov constant was better than convergence of 
constant C, (see figure 6). The maximum difference between values of C obtained for 
T = 1 and 5 min was about 5%. 

5. External intermittency measurements 
Strictly speaking, intermittency measurements must be performed with a vorticity 

meter. Existing devices are combinations of several hot wires which are packed 
within a volume with linear size of the order of 1.5-3 mm (Antonia, Browne & Shah 
1988; Foss & Wallace 1989; Tsinober, Kit & Dracos 1992). It is seen in table 1 that 
these devices could resolve scales which are larger than 511-1511, i.e. the spatial 
resolution would be poor. Therefore it was decided to use a longitudinal velocity 
derivative as a detector. 

As is seen from reviews by Hedley & Keffer (1974), Antonia (1981) and Praskovsky 
(1982), intermittency measurements are based on the generation of an intermittency 
function r which is equal to  1 if a detection function g is above some threshold level 
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FIGURE 8. Spectra of the intermittency function at location AW2 obtained at different threshold 
levels. Solid lines denote experimental data, dotted lines denote inertial-subrange power laws, 
vertical arrows denote mean turbulent interval. Note the one order-of-magnitude shift for curve (b)  
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h during a time interval more than 7 ,  and is equal to zero otherwise. Usually g = 
( a ~ / a t ) ~  or g = lau/atl if a single hot wire is used. Various modifications of such a 
method were tried in the present work since we found considerable difficulties which 
could not have been anticipated from existing data obtained at moderate Reynolds 
numbers. The first difficulty is clearly seen in figure 7 where the p.d.f. of the velocity 
derivative modulus is presented. There is no preferable threshold level. The second 
difficulty will become clear after an examination of the intermittency function 
spectrum E,. 

To calculate this spectrum, the detection function was chosen to be q = lau/atl. 
It has been smoothed by a digital low-pass filter with cut-off frequency equal to 
fF = uK, i.e. it  was equal to the frequency where the maximum of the dissipation 
spectrum was observed. Such a smoothing was equivalent to choosing 7 = 1/27cfF. 
Thus all viscous scales were removed. 

Spectra of the intermittency function are presented in figure 8. The threshold level 
h was varied here: in all cases it was chosen to satisfy a condition $ C,, where 
subscripts t and n denote conditional averaging over turbulent and non-turbulent 
fluid respectively. In particular it was found that ct/cn = 21 for curve ( b ) ,  obtained 
with a threshold level defined later in this section. 



610 V.  R.  Kuznetsov, A .  A .  Praskovsky and V.  A .  Sabelnikov 

lo-' 

lo-' 

- 
W 
E 

10-~ 

kf 

1 o-E 
1 n-' 
'" loo 10' 10' loa lo4 lo4 lo4 

kL 
FIGURE 9. The influence of smoothing at location ML1. Note the one order-of-magnitude shift for 
curve (b) and two order-of-magnitude shift for curve (c) along abscissa. (a)fp/fK = 10/8; ( b )  1/8; 
(c) 1/80. 

Two clearly distinguishable regions are seen in figure 8, for k < 1/L, and k > l/Lt. 
Here L, is a mean turbulent interval which is equal to xi - x ~ - ~ ,  where xt is a leading 
edge of the intermittency function and xi-l is a trailing edge of the intermittency 
function (r= I if xi < x < xi-l). It is evident that the second high wavenumber 
region is a typical inertial subrange where the intermittency function spectrum could 
be-approximated as follows : 

- 

E J k )  = Ak-s. (24) 
Here constant A does not depend on k. This is something quite new since this 
subrange is absent at moderate Reynolds numbers (see for instance LaRue & Libby 
1976). To model moderate-Reynolds-number data, the detection function was 
smoothed still further (see figure 9). No inertial subrange is seen with large 
smoothing. Smoothed data are the same as those of LaRue & Libby (1976), i.e. 

EYy(k)  - k-' 
if the wavenumber is sufficiently large. It is also seen that the spectrum of the 
intermittency function and hence the intermittency factor is influenced significantly 
by the value of the cutoff wavenumber. 

It seems that the large-scale part (k < l/LJ of the intermittency spectrum is 
caused by the external intermittency and the small-scale part (k > l/L,) of the 
spectrum is caused by the internal intermittency. The transition between both parts 
is rather abrupt. Hence the model leading to (10) and (1 1) seems to be correct, as least 
qualitatively. However, it is very difficult to draw quantitative conclusions about 
the external intermittency, since we have from (24) 

where the constant B does not depend on 7. It could be concluded that the constant 
A tends to zero at  infinite Reynolds number since y < 1 and { < 1 in all cases, i.e. the 
spectrum of intermittency function in an inertial subrange depends significantly on 
Reynolds number. 

It is evident from the previous discussion that an inertial subrange of the 
intermittency function spectrum would not be present a t  infinite Reynolds number 
since A + O .  However, the term AqC-l in (25) could be either zero or non-zero at  
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FIGURE 10. Conditionally averaged velocity in the vicinity of the boundary between turbulent 
and non-turbulent fluid, location AW2. 

infinite Reynolds number. The second case is quite possible, as was found from the 
integration of spectra presented in figure 8 (y  = 0.13 for curve a, y = 0.26 for curve 
b,  y = 0.44 for curve c if wavenumbers larger than 1/L, were removed). It is clear that 
the overall intermittency factor is of the same order of magnitude (see the caption 
to figure 8). Of course definite conclusions could only be drawn from measurements 
at  much higher Reynolds numbers. However, that would be very difficult since the 
Reynolds numbers reported here are close to the maximum value that can be 
obtained in laboratory. 

It was also found that the exponent [in (24) depends on the threshold level. Hence 
it is quite probable that the limit (9) does not exist, as was discussed in $2. 

Therefore the intermittency factor described below should be treated as an 
empirical correlation parameter. The resulting values of this parameter are close to 
the usual external intermittency factor since we have used a method proposed by 
Townsend (1956), i.e. it was assumed that the kurtosis of the velocity derivative Kt 
is constant within a turbulent fluid. As was mentioned earlier, the detector function 
was chosen to be g = lau/atl. It was smoothed by a low-pass digital filter with cutoff 
frequency uK. It is evident that one empirical constant (i.e. K t )  needs to be found to 
use Townsend’s method. Usually it could be measured in the region where external 
intermittency is negligible. However, such measurements were impossible in the 
mixing layer, at the axisymmetric and three-dimensional wakes since considerable 
intermittency was found throughout these flows. (It must be noted that the 
intermittency factor is always significantly less than unity in the mixing layer. This 
was also the case in some of the wakes studied, since measurements were done at a 
moderate distance from a cylinder). Therefore it was decided to adopt some empirical 
equation for the threshold level. Plane wake data were used for this purpose since no 
intermittency was found on the plane of symmetry. The threshold level was assumed 

was chosen to produce the best agreement between the adopted method and 
Townsend’s method. Since the threshold level was not known a priori several 
iterations were needed to generate an intermittency function. 
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FIGURE 12. Conditionally averaged dissipation in the vicinity of the boundary between 
turbulent and non-turbulent fluid, location AW2. 

In all cases the value of (&/at): averaged over non-turbulent fluid was much less 
than that averaged over turbulent fluid (see table 1 ) .  To investigate further whether 
or not a reasonable threshold level was chosen, the flow conditions in the vicinity of 
the interface between turbulent and non-turbulent fluid have been studied. Two 
sequences: ti') (T(t{l)-O) = 0, f ( t ! l ) + O )  = 1) and tiz) ( f ( t i2 ) -0)  = 1,  f ( t i 2 ) + O )  = 0) 
were selected, i.e. the trailing and leading edges of intermittency function were 
studied separately. Velocity, turbulence energy and mean-square velocity derivative 
were averaged overall ti') or ti2) for the conditions t-til) = const or t - t i2 )  = const, 
where lt-t{l)l or It-ti2)1 were less than a half the turbulent time interval. Such an 
averaging is denoted by a double overbar. 

Results are presented in figures 1Ck12 : considerable variations of all quantities 
across the interface are clearly seen. Similar results were reported by Jenkins & 
Goldschmidt (1976). Thus it seems that the choice of threshold level was reasonable. 
Of course this is not a very reliable proof, and therefore the method adopted here 
gives only a rough estimate of the external intermittency factor. 

6. Inertial-subrange constants 
6.1. Kolmogorov constant 

Measurements of the Kolmogorov constant C are presented 2)s. the intermittency 
factor in figure 13. It is seen that ( 1  1 a )  is confirmed by the present data. 
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However, some uncertainties must be kept in mind. There are some doubts 
concerning (15) since it is valid only if the fine-scale structure is isotropic. Moreover, 
the degree of anisotropy could be different a t  various locations. For instance the 
dissipation, calculated from (15), is 45% less than the true value at the wake plane 
of symmetry and is 80 % less than the true value at the wake edge (Browne, Antonia 
& Shah 1987). Therefore the true experimental curve C(y) would be steeper than the 
experimental curve shown in figure 13. There are also some uncertainties concerning 
the measurements of intermittency. 

6.2. Exponent ,u 

Four methods were used to calculate exponent ,u (see $3.1). It was shown that values 
of ,u given by different methods are different. One more example is given in figure 14. 
Here ,u was calculated from (16), and a good correlation was found between ,u in (16) 
and the intermittency factor (see figure 15). There are two new findings. The first one 
is the variability of exponent ,u. This conclusion does not depend on the definition of 
the intermittency factor or on its measurement inaccuracy. The second finding is the 
universal dependence of ,u on y.  This is relatively unimportant since this 
‘universality’ has of course been demonstrated only for the flows actually studied 
(see discussion $8). Thus universality should be treated only as a proof of the 
systematic variation of exponent ,u. Hence one can conclude that errors in measuring 
,u are relatively unimportant. 
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To give more proof that variability of the inertial-subrange exponents does exist, 
the quantities 

were calculated for n = 1.5,2.  It was found that data could be well approximated by 
the equation 

R,(r) - r -pn (26) 

if an inertial subrange was considered. Since similar results were reported by Gagne 
& Hopfinger (1979), a comparison between (26) and experimental data is not 
presented. Equation (26) is not trivial, since correlations R,(O) and R,(oo) (n  =I= 1 )  
depend quite differently on Reynolds number (Monin & Yaglom 1967). Thus an 
influence of Reynolds number could be expected even if an inertial subrange is 
considered. Generally speaking, power laws such as given by (26) are not valid for 
n >  1. 

Data for n = 1.5 and 2 are presented in figure 16. These data are somewhat lower 
than those of Gagne & Hopfinger (1979) x %, p, x Q). It is seen in figure 16 that 

x const and p,/p x const. Since p is a universal function of y this means that 
both exponents are also universal functions of y.  It is also seen that exponent p, is 
up to three times larger than exponent p1 E p. Exponent p1.5 is also larger than p. 
Therefore correlations Rl,5 and R, vary more rapidly with r than R, does (it was 
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found that R, varies by a factor of about 30 in an inertial subrange). Thus it could 
be expected that the measurements of exponents p l , s  and p, were more accurate than 
the measurements of the small exponent p l ,  i.e. the correlation presented on figure 
15 is not mere coincidence. 

An additional experiment has been carried out to prove the variability of p. As was 
explained in $ 1  this proof could be based on conditional averaging. Therefore the 
quantity [au(x)/Clzau(z + r ) / a ~ ] ~  was averaged over all turbulent intervals which 
were longer than L,. The exponent p obtained by this conditional averaging is 
denoted by pt. Results are presented in figure 17. It is seen that pt is considerably less 
than p. It is also seen that the variability of exponent pt is less than the variability 
of p. However, the accuracy of these measurements was not high enough since 
exponent pt was too small. 

6.3. Constant C, 
Good correlation was found between constant C, and the intermittency factor (see 
figure 18). Equation (16) was used to calculate these data. Equation ( l i b )  was 
confirmed only qualitatively ; quantitative agreement was not very good, probably 
due to the lack of accuracy of intermittency measurements. This lack of accuracy 
does not affect the correlation presented in figure 13 since the Kolmogorov constant 
is proportional to a small power of y .  

Constant C, was also calculated using conditional averaging over turbulent 
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intervals which were longer than L,. This version of the constant is denoted by Ct,. 
Results are presented in figure 19 (a ) ,  and it is seen that Ct, does not depend on y. This 
agrees with data presented in figure 17. 

6.4. Exponent g in  equation (24) 
It was found that the exponent 6 in the inertial-subrange power law for the 
intermittency spectrum also depends on the external intermittency factor (see figure 
19b). This dependence was approximately the same in all flows. 

6.5. Moments of various orders 
Quantities IAu(r)l" were calculated for n = Q up to n = 8. Power laws given by (3) 
were verified. The upper and lower bounds of the inertial subrange were 
approximately the same as for n = 2. Data are presented in figure 20. Results of 
Anselmet et al. (1984) obtained in a fully developed turbulent duct flow and in an 
axisymmetric jet are also presented in figure 20. It can be seen that the current 
results agree with those of Anselmet et al. (1984) within the data scatter. It seems 
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FIGURE 21. Various powers of dissipation conditionally averaged at a constant velocity, 
location PW1. Note the negligible intermittency. 

that the lognormal model (4) provides a slightly better approximation than the /3- 
model ( 5 ) .  However, the data scatter is rather large and it is a bit premature to draw 
a definite conclusion. 

7. Measurements of conditionally averaged dissipation 
Experiments reported in $6 suggest the variability of all inertial-subrange 

constants. It is likely that this is consequence of some direct interaction between 
small-scale and large-scale eddies, so it was natural to detect such an interaction in 
the measurements of the dissipation averaged at various conditions (see (12) and 
(13)). To calculate the quantity defined by (12), the square of velocity derivative was 
averaged over time intervals t, and ti + At,, where ~ ( t , )  = u and u(tt + At,) = u + Au. 
The velocity interval was equal to Au = 0.1 (2);. The same procedure was used to 
calculate 

which is similar to that defined by (12). 
No appreciable statistical dependence between the velocity and its derivative was 

found in the regions of negligible external intermittency (see figure 21). Similar 
results were obtained by Kuznetsov & Rasschupkin (1977), Praskovsky (1983) and 
Kuznetsov et al. (1984) at the plane of symmetry in a wake. 

On the other hand there was a statistical dependence between the velocity and its 
derivative in the intermittent regions (see figure 22). However, such a dependence 
was not observed in a turbulent fluid (also see figure 22). To calculate the 
conditionally averaged velocity derivative squared (au/az)i,, only turbulent 
intervals were considered. Other details of the calculation were the same as those 
reported above. Similar results were reported by Praskovsky (1983) and Kuznetsov 
et al. (1984). 

The quantity defined by (13) was also calculated. The velocity derivative squared 
was averaged over time intervals ti, t,+At, such that 

u(t,)-u(ti+r/U) = Au, u(t,+At,)-u(t,+At,+r/U) = Au+SAu, 

where 6Au = 0.1 (&@, Au = u(z+r)-u(x) .  
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FIUURE 22. Dissipation conditionally averaged at a constant velocity, location TW3. 
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FIQURE 23. Dissipation conditionally averaged at a constant velocity difference, location ML2. 
(a) r/L = 0.0103, ( b )  0.0515; (c) 0.257. 

Some data are presented in figure 23. The statistical relation between fluctuations 
of dissipation and velocity differences is strongly pronounced at small r .  Similar data 
were obtained in other cases. 

It should be kept in mind that data presented in figures 22 and 23 were obtained 
in three-dimensional wakes where turbulence intensity was as low as 4.5% (see table 
1). Therefore the use of Taylor's hypothesis for the calculation of velocity derivatives 
was adequate. Nonlinearity of hot-wire response was also negligible. 

It seems that the independence of velocity and dissipation fluctuations is a 
manifestation of some equilibrium of turbulence fine-scale structure. Therefore such 
an equilibrium does not exist in an intermittent flow. On the other hand, some kind 
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of equilibrium does exist inside a turbulent fluid since velocity and dissipation at one 
point of this fluid are independent. However this equilibrium is not complete since 
there is a statistical relation between dissipation and the two-point velocity 
difference. 

8. Discussion 
The experiments reported herein were performed to test two approaches to the 

theory of fine-scale turbulence structure. There are many versions of the first 
approach (DIA, EQDNM and so on). All these versions are based on the 
Navier-Stokes equations and their goal is to predict the turbulence spectrum or the 
second-order structure function. Neither external nor internal intermittency is taken 
into account. The validation of this approach is based mainly on a comparison 
between measured and calculated values of the Kolmogorov constant. The second 
approach is based on some similarity hypotheses instead of the Navier-Stokes 
equations. Its main goal is to predict the influence of internal intermittency on the 
structure functions of various orders. External intermittency is not taken into 
account here either. 

In contrast to the conclusion of the first approach, experiments reported prove the 
variability of the Kolmogorov constant beyond all doubt. The observed variability 
was up to a factor 2.5 (see figure 13); that is, much more than likely error of 
measurements. In an attempt to adopt classical results, a simple model leading to 
(10) was designed. It is based on three assumptions: (i) the variability of the 
Kolmogorov constant is caused by an external intermittency; (ii) there is a distinct 
boundary between turbulent and non-turbulent fluid ; (iii) the fine-scale properties of 
turbulent fluid are the same in all flows. The validity of these assumptions for the 
prediction of the second-order structure function was verified since there was good 
agreement between data and (10) (see figure 13). Therefore it seems that there would 
be no difficulties if the first approach (based on the Navier-Stokes equations) were 
applied to the turbulent fluid. 

However, some doubts still remain since there is a variation of other inertial- 
subrange constants (p, p1.5 and ,us). These variation of the exponent p was 
considerable (up to a factor two, see figure 15). Moreover, identical and systematic 
variation of these constants was observed in five different flows (see figures 15 and 
16). Thus it seems that the variability of the inertial-subrange exponents was also 
proven. Hence the use of assumption (iii) leads to some errors and such errors are 
small only for the low-order moments. It should also be kept in mind that we were 
not able to make a clear distinction between effects caused by external and internal 
intermittency. This is a basic and yet unresolved difficulty. Moreover we do not know 
if there is a distinct boundary between turbulent and non-turbulent fluid. It is clear 
that the first approach should be basically modified if this is the case. 

It seems that the variability of the exponents contradicts the second approach 
also, since it indicates that there are some other parameters which are not listed in 
the formulation of the similarity hypothesis. This is a key question concerning the 
whole of turbulence theory. The difficulty here is caused by the large number of 
degrees of freedom, mostly associated with the fine-scale motion. Thus a solution is 
possible if there is some universal equilibrium of small eddies and the dependence 
between fine-scale and large-scale statistics is established. It was assumed in the 
original Kolmogorov (1941) theory that fine-scale statistics depends only on E. Since 
this theory was not completely successful one more quantity (i.e. the turbulence 
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integral scale) was added to the list of governing parameters. Now we see that this 
list is incomplete. 

Hence it seems that variability of all inertial-subrange constants is the most 
important finding of the present work. It is clear that such variability depends 
neither on the definition of external intermittency nor on errors of measurements. 
The universal dependence of the inertial-subrange constants (see figures 13, 15 and 
16) is a less important finding for two reasons. The first is the unsatisfactory 
definition of y.  Hence a t  the present time we do not know the influence of Reynolds 
number, large-eddy structure, etc. on the external intermittency factor. 

The second reason is more complicated. To clarify it let us consider the wake 
behind a cylinder placed in a slowly fluctuating external flow with a non-zero lateral 
velocity. Let us assume that the scale of external fluctuations is much larger than the 
distance between the cylinder and the cross-section where measurements are done. 
This flow could be modelled by the wake behind a cylinder randomly moved in a 
lateral direction. Let the position of the cylinder axis yo be a stationary function of 
time, and let the integral timescale of this function be very large. It is clear that slow 
cylinder movement does not affect turbulence dynamics, i.e. the cylinder and the 
wake move in a lateral direction as solid body. Therefore the data obtained in a frame 
moving with the vibrating cylinder would be the same as those obtained in the case 
of a non-vibrating cylinder. this means that in a laboratory frame the intermittency 
factor profile would be y = yo (y+yo) and the profile of exponent ,u would be ,u = 
,uo[yo(y + yo)] where yo and ,uo are data obtained behind the non-vibrating cylinder. 
Therefore it is convenient to use two-stage averaging. At  the first stage the data could 
be averaged over a time interval much smaller than the timescale of a cylinder 
movement. At the second stage the p.d.f. of the cylinder position P(yo) must be used 
to average all data, i.e. 

(27 ) 

Equation (27) is basically the same as (8). Similarly we have 

R, - I r - ~ o [ h ( Y + Y J 1  P(yo)  dy,. 

R ,  - r-~o[Yo(~fyornax)l  

if r tends to zero. Here yomax is a maximal value of yo. If y is excluded from the 
equations 

Po = ,u[YO(Y+YO)l, Y = YO(Y+YO)P(YO)dYO, s 
then a dependence ,u on y could be obtained. It is evident that such a dependence 
does not need to be the same as presented in figure 15. However, even in this case 
there is the possibility that all exponents in the inertial subrange power laws could 
depend on one parameter since exponents ,u1.5 and ,uz are linearly dependent on ,u 
(see figure 16). 

It could be concluded from this example that the variability of exponent p is an 
alternative in nature. It seems that proof of such variability could be based on 
comparing data in figures 15 and 17: values of exponent ,u obtained from 
conventionally and conditionally averaged data are different. Thus it seems that one 
of the basic conclusions of multifractal theory (Parisi & Frisch 1985) is confirmed by 
the present study. 

On the other hand it is seen in figure 23 that there is some kind of direct interaction 
between dissipation fluctuations and movement of eddies with scales much larger 
than the Kolmogorov scale. This interaction could be one of the causes of random 
variability of exponent p. Such an interaction is ignored in the multifractal model, 
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since it is assumed that the random variability of all exponents is caused by 
singularities of solutions of the inviscid Navier-Stokes equations. The present 
experiments neither confirm nor contradict this idea. 

The final manuscript was prepared while A. A. P. was a Senior Research Fellow at 
the NASA/Stanford Center for Turbulence Research. The authors express sincere 
gratitude to CTR for support end to  Professor P. Bradshaw, Drs S. S. Veeravalli and 
S. Belcher for comments on the draft. 
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